Optimization of CO2 Sequestration in Saline Aquifers
نویسندگان
چکیده
For optimization of geological carbon sequestration (GCS) in saline aquifers, a genetic algorithm (GA) based optimizer has been developed and combined with the DOE multi-phase flow and heat transfer numerical simulation code TOUGH2 [1],[2]. Designated GA-TOUGH2, this combined solver/optimizer has been validated by performing optimization studies on a number of model problems and comparing the results with brute-force optimization, which requires a large number of simulations. Using GA-TOUGH2, an innovative reservoir engi‐ neering technique known as water-alternating-gas (WAG) injection has been investigated in the context of GCS, Additionally, GA-TOUGH2 has been applied to determine the optimal WAG operation for enhanced CO2 sequestration capacity. GA-TOUGH2 is also used to perform optimization designs of time-dependent injection rate for optimal injection pressure management, and optimization designs of injection-well distribution for minimum well interference. The results obtained from these optimization designs suggest that over 50% reduction of in situ CO2 footprint, greatly enhanced CO2 dissolution, and significantly improved well injectivity can be achieved by employing GA-TOUGH2. The technique has also been employed to determine the optimal well placement in a multi-well injection operation. GA-TOUGH2 appears to hold great promise for studying a host of other optimization problems related to GCS.
منابع مشابه
Coupled Hydromechanical Modeling of Co2 Sequestration in Deep Saline Aquifers
Sequestration of carbon dioxide (CO2) in deep saline aquifers has emerged as an option for reducing greenhouse gas emissions to the atmosphere. The large amounts of supercritical CO2 that need to be injected into deep saline aquifers may cause large fluid pressure increases. The resulting overpressure may promote reactivation of sealed fractures or the creation of new ones in the caprock seal. ...
متن کاملNumerical simulation and optimization of CO2 sequestration in saline aquifers for enhanced storage capacity and secured sequestration
Saline aquifer geological carbon sequestration (SAGCS) is considered most attractive among other options for geological carbon sequestration (GCS) due to its huge sequestration capacity. However, in order to fully exploit its potential, efficient injection strategies need to be investigated for enhancing the storage efficiency and safety along with economic feasibility. In our previous work, we...
متن کاملExperimental investigation of geochemical and mineralogical effects of CO2 sequestration on flow characteristics of reservoir rock in deep saline aquifers
Interactions between injected CO2, brine, and rock during CO2 sequestration in deep saline aquifers alter their natural hydro-mechanical properties, affecting the safety, and efficiency of the sequestration process. This study aims to identify such interaction-induced mineralogical changes in aquifers, and in particular their impact on the reservoir rock's flow characteristics. Sandstone sample...
متن کاملScaling Behavior of Convective Mixing, with Application to Geological Storage of CO2
CO2 storage in deep saline aquifers is considered a possible option for mitigation of greenhouse gas emissions from anthropogenic sources. Understanding of the underlying mechanisms, such as convective mixing, that affect the long-term fate of the injected CO2 in deep saline aquifers, is of prime importance. We present scaling analysis of the convective mixing of CO2 in saline aquifers based on...
متن کامل